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Abstract

This paper is devoted to the numerical study of a two-dimensional model for plasma expansion in vacuum. The plasma,
constituted of ions and electrons, is injected from a part of the cathode and undergoes a thermal expansion. Due to the
positive anode potential, electrons are emitted from the plasma–vacuum interface, forming an electron beam. Moreover,
electron emission produces a reaction-pressure force which slows down the plasma expansion. Previous works [P. Degond,
C. Parzani, M.H. Vignal, Un modéle d’expansion de plasma dans le vide, C. R. Acad. Sci. Paris 335 (2002) 399; P. Degond,
C. Parzani, M.H. Vignal, Plasma expansion in vacuum: modeling the breakdown of quasineutrality, SIAM, Multiscale
Model. Simul. 2 (2003) 158; P. Degond, C. Parzani, M. H. Vignal, A model for plasma expansion in the vacuum, in: Pro-
ceedings of the Conference ‘‘Free Boundary Problems 2002’’, Trento, June 2002] have been realized to describe this process
in the one-dimensional case. One of the main goal is to get a precise description of the interface motion. The aim of the
present work is to explore more realistic cases investigating a two-dimensional model. However, considering upper dimen-
sions yields to new difficulties essentially from a numerical point of view. Indeed, in the 2D space case, the plasma–vacuum
interface is no more a point but a curve. Therefore, in this work, after proposing a two-dimensional model, we focus on the
interface tracking using a volume of fluid method. We perform numerical simulations on two test cases. The first test case
consists in a two-dimensional fluid compression for which an analytic solution is known. The second test case is the plasma
bubble expansion between two electrodes.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this article, we are interested in the two-dimensional numerical modeling of a plasma expanding in the
vacuum between two electrodes. This plasma is assumed quasi-neutral and constituted of one ion species and
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of electrons. It is injected from a part of the cathode and undergoes a thermal expansion in the gap between
the electrodes. During its expansion, attracted by the high positive potential of the anode, some electrons are
emitted in the gap. They form a beam in the vacuum. Then, the device is divided in two regions with different
characteristic properties: the plasma region which is a quasi-neutral zone and the beam region where there are
only electrons.

We use a fluid description, then all the device, between the cathode and the anode, can be described using a
two-fluid model constituted of the Euler equations for each species coupled with the Poisson equation for the
potential. Unfortunately this model has some severe numerical constraints (see [19]). They are related to the
so-called Debye length and electron plasma period, well known in plasma physics (see [5,29]). The Debye
length is the typical length at which electric interactions occur and the electron plasma period is the period
of the electrons oscillations around their equilibrium position. They are both inversely proportional to the
square root of the quasi-neutral plasma density. In a numerical point of view, in classical discretizations,
the space and time steps must resolve these scales in order to prevent instabilities.

Here, we are interested in two physical applications, the first application deals with high current plasma
diodes, see [30,34,48,55,58]. In this case, the plasma is used to increase the extracted current as compared
with conventional plane diodes. The second application concerns electrical discharges on satellite solar
panels and more precisely the transition from the primary discharge to the electric arc, see [6,18,24,28].
Note that this study can be also applied to electron beam driven flash X-ray radiography problems,
see [33] for a detailed review of recent advances. Furthermore, the physical problems studied here have
strong analogies with the ion sheath problem see [23,41,50,51] and references therein. Then, in the physical
applications we are interested in (high current plasma diodes and electrical discharges on satellite solar
panels), the densities in the plasma are very high. Therefore, the associated Debye length and plasma per-
iod are very small. This yields to numerical simulations in two dimensions, too much expensive to be done
in practice.

There are two possible ways to overcome this limitation. The first way, chosen in [11,7,9,45,49], consists in
finding an asymptotically stable discretization, i.e. a scheme which does not require the resolution of the small
scales of the plasma period and of the Debye length. The second way, chosen in [10,12,13] for one-dimensional
problems and that we choose here, consists in finding an asymptotic model in the quasi-neutral region, the
discretizations of such a model do no require to resolve the plasma period and the Debye length. In
[10,12,13], different one-dimensional models are proposed. They consist in quasi-neutral models for the plasma
region and a Child–Langmuir model for the beam region. They are all obtain letting formally tend the Debye
length to zero in the initial two fluid model with different assumptions for each models.

In [12] the plasma is assumed to be a free current plasma. The resulting asymptotic quasi-neutral model, for
the description of the plasma, is the Euler system for the quasi-neutral density n = ni = ne and the total
momentum q ¼ ðmi þ meÞnu where ni, ne and ui = ue = u are the ion and electron densities and velocities, fur-
thermore mi and me are the particle masses. For the description of the beam, we derived a Child–Langmuir
model (see [31]) which has an explicit solution in one dimension (see [16]). The key point of the modelization
is the connection between the two regions. Basing on one-dimensional simulations of the two-fluid model, we
assume that the beam exerts a force on the plasma. This force, called in the following the ‘‘pressure reaction
force’’, slows down the plasma expansion and creates a shock at the plasma–beam interface. Then using
Rankine–Hugoniot relations we determine the pressure reaction and the velocity of the interface, note that
the velocity is given by the ion velocity at the plasma–beam interface. The one-dimensional numerical simu-
lations of this model (see [12] for the isentropic case and [14] for full Euler equations) show that this model
leads to the right interface velocity. But it gives an overflow in the density results near the interface. This is
due to the fact that the ‘‘pressure reaction force’’ is concentrated at the interface.

In order to overcome this problem, we proposed in [13] a one-dimensional quasi-neutral model with a non-
vanishing current for the description of the plasma. One of the formulations of this model is constituted of the
isentropic Euler equations for the quasi-neutral density and the total momentum but with some additional
terms in the flux of the conservation momentum equation. These additional terms depend on the current
which is constant in all the device and is given by the Child–Langmuir current of the beam region. These terms
express the reaction of the beam region onto the plasma region. Note that in this case the pressure reaction
force is exerted in all the plasma and not only at the interface. The numerical simulations of this model show
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a very good agreement with the results of the two-fluid model simulations. Unfortunately this formulation is ill
posed in two dimensions. In [10], we proposed and compared different formulations of this model which can
be used in two dimensions. These formulations are all given by hyperbolic systems with an implicit nonlinear
constraint. This constraint makes these formulations difficult to solve numerically.

Now, the aim of this article is to explore more realistic situations studying the two-dimensional space case.
The interface is then a curve which leads to new difficulties in the modeling as well as in the numerical scheme.
Here, we want to focus our attention on the difficulties related to the numerical simulation of the plasma–
beam interface. For these reasons we use the zero current model presented in [12] which is simpler to discretize.

We begin this article with the description of the two-dimensional mathematical model in Section 2. Follow-
ing the idea of [12], by a formal asymptotic analysis, from the two-fluid Euler Poisson model, we derive a
quasi-neutral model for the plasma zone. This model is constituted of the isentropic Euler equations for
the quasi-neutral fluid. For the beam region we choose a simplified model. It consists in assuming that the
one-dimensional Child–Langmuir law can be applied. For all points of the plasma–beam interface, knowing
the distance covered by an electron from this point to the anode, the one-dimensional Child–Langmuir law
gives the current at the plasma–beam interface point. We propose a simple method to approximate this cov-
ered distance.

In Section 3, we present the numerical scheme. Note that the main difficulty is the plasma–beam interface
discretization. We consider this problem as a problem of an interface separating two fluids: the plasma and
the vacuum of plasma. There are several families of methods used in the literature for the numerical sim-
ulations of moving interfaces. A detailed review of these families is done in [43,52]. The first family, see
[1,25,35] and references therein, consists in Lagrangian methods in which the mesh follows the fluid. When
there are large fluid displacements, the mesh can suffer of large distortions and it is necessary to rezoning
periodically. Then, there is the interface tracking family. It consists in discretizing the interface with some
points and in following their positions on an Eulerian mesh, for further details, one can see [21,22,56,40].
Finally, there are the Eulerian methods family with the ‘‘volume of fluid’’ and level set methods. The main
idea of the volume of fluid methods (see [26]) consists in following the interface with the volume fraction of
the fluid in all the cells of the mesh. This volume fraction is updated at each time step determining the
advected quantity of fluid from a cell to its neighbors (see [59]). One can see [3,8,42,44] for recent develop-
ments. In the level set methods the interface is defined as a zero level set of a continuous function advected
with the fluids velocity. This method was introduced in [38] and has been further developed in [4,27,53,54],
one can also see the books [37,47].

We chose to use a VOF method because we wanted an Eulerian method in order to use a simple fixed Carte-
sian mesh and because it seems to us well adapted to take into account of the pressure reaction force at the
plasma–beam interface. For all cells of the mesh and all time step the unknowns are the volume fraction of
each fluids present in the cell and the averaged fluid variables (densities, velocities, etc.). These averaged quan-
tities are advected using a Lagrangian scheme. Then a projection step gives the advected volume fraction and
averaged fluid variables on the Eulerian mesh. Here we use the SLIC algorithm (for simple line interface cal-
culation, see [36]) to define the transfer priorities of the plasma in the cells of the mesh. In our applications, the
main difficulty consists in taking into account at the discrete level of the ‘‘pressure reaction’’ term acting along
the interface. To this aim, we need to localize the plasma–beam interface. Then, we use Young’s method (see
[60]) which gives an oblique representation of the interface.

In Section 4, we present numerical results. We begin with a test case of a two-dimensional fluid compres-
sion. The fluid is initially located in a ball and a uniform pressure applied on its boundary compresses it
toward the radius center. Since we know an analytic solution we can study the accuracy of our discretization.
We conclude this article with numerical simulations for high current diodes, we simulate the plasma bubble
expansion between two electrodes.

2. Presentation of the model

Here, we present the two-dimensional model used for the description of the plasma bubble expansion in the
gap between two electrodes. We recall that it is a two-dimensional model which is an extension of the one-
dimensional zero current model given in [12]. We begin with the presentation of the different regions and their
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dynamics. Then we give the quasi-neutral model for the plasma region and the simplified Child–Langmuir
model valid in the beam region.

2.1. The different regions and their dynamic

We consider the device shown in Fig. 1. The cathode CK is defined by CK ¼ fðx; yÞ 2 R2;
x ¼ fKðyÞ and y 2 ½a; b�g and the anode by CA ¼ fðx; yÞ 2 R2; x ¼ fAðyÞ and y 2 ½a; b�g where a and b are
given reals and fK : ½a; b� ! R and fA : ½a; b� ! R are given smooth functions. We define the artificial bound-
ary by Cart ¼ ½fKðaÞ; fAðaÞ� � fag [ ½fKðbÞ; fAðbÞ� � fbg. Then, we consider the domain X delimited by CK, CA

and Cart as shown in Fig. 1. The particles are injected from a part of the cathode and the plasma bubble, XP,
expands in the domain X. Note that the domain X is chosen sufficiently large such that the artificial boundary
Cart is far from the plasma region during all the simulation.

We describe the particles in the domain X by their density and their velocity ni, ui for the ions and ne, ue for
the electrons. Furthermore, we denote by / the electric potential and we suppose that /jCK

¼ 0. Following
[12], we assume that the plasma region, i.e. the region filled by the quasi-neutral plasma, is given, for all
t > 0, by
Fig. 1.
electro
XPðtÞ ¼ fðx; yÞ 2 X; y 2 R and x < supfn 2 R; niðn0; y; tÞ > 0 8n0 2 ½0; n�gg: ð1Þ

Then the plasma–beam interface and the beam region are, respectively, defined by
CðtÞ ¼ oXPðtÞ \ X and XBðtÞ ¼ X n ðXP [ CðtÞÞ: ð2Þ

The plasma region is characterized by the presence of ions, then it moves with the ions velocity, i.e. for all
X ¼ ðx; yÞ 2 CðtÞ we have
dX
dt
¼ uiðX ; tÞ: ð3Þ
The two-dimensional model consists in using the quasi-neutral model, given in Section 2.2, for the plasma re-
gion XP and the simplified Child–Langmuir model, given in Section 2.3 for the beam region XB.

2.2. The quasi-neutral model in the plasma region

For describing the plasma, we use a two-dimensional quasi-neutral model with a vanishing current. It is
given by the Euler equations for the density n and the total momentum nu of the plasma. We write for all
t > 0 and all ðx; yÞ 2 XPðtÞ:
The two-dimensional device: the plasma bubble, XP, expands between the cathode CK and the anode CA, during its expansion some
ns are emitted in the vacuum forming a beam in XB.
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/ðx; y; tÞ ¼ 0;

niðx; y; tÞ ¼ neðx; y; tÞ ¼ nðx; y; tÞ; uiðx; y; tÞ ¼ ueðx; y; tÞ ¼ uðx; y; tÞ;
otnðx; y; tÞ þ r � ðnðx; y; tÞuðx; y; tÞÞ ¼ 0;

ðmi þ meÞðotðnuÞðx; y; tÞ þ r � ðnu� uÞðx; y; tÞÞ þ rpðnðx; y; tÞÞ ¼ 0;

ð4Þ
where p is the sum of the ion and electron pressure laws. Assuming isentropic laws, it is given by
pðnÞ ¼ piðnÞ þ peðnÞ ¼ Cinci þ Cence where Ci > 0 and Ce > 0 are given constants and ci and ce are, respectively,
the ionic and electronic ratios of specific heats. Note that it is possible to extend this model to the full Euler
system like in [14], but for simplicity, we only consider isentropic laws.

We suppose that initially the domain is devoid of plasma then XPð0Þ ¼ ; and the associated boundary con-
ditions are the following:

– at the cathode, we inject a quasi-neutral plasma with a normal velocity:
njCK
¼ n0 > 0; ujCK

¼ �u0m; ð5Þ

where m is the unit normal to CK external to X and n0 and u0 are given positive real numbers.
– at the interface C(t), following [12], we impose the value of the pressure. This pressure is the pressure reac-

tion force exerted by the beam region on the plasma region. Using Rankine–Hugoniot relations (see [12] or
[39] for more details), we obtain
pðx; y; tÞ ¼ me

jjþðx; y; tÞ � mðx; y; tÞj
2

n�ðx; y; tÞ
þ peðn�ðx; y; tÞÞ; ð6Þ

for all t > 0 and all ðx; yÞ 2 CðtÞ. The vector m is the unit normal to C(t) external to XP, j+ is the beam current
and n� the quasi-neutral density at the considered point:

jþðx; y; tÞ ¼ lim
ðx0 ;y0Þ!ðx;yÞ
ðx0 ;y0Þ2XB

�ðneueÞðx0; y0; tÞ; n�ðx; y; tÞ ¼ lim
ðx0 ;y0Þ!ðx;yÞ
ðx0;y0Þ2XP

nðx0; y 0; tÞ: ð7Þ
2.3. The simplified Child–Langmuir model in the beam region

In the beam region there is no more ion and a quasi-neutral model cannot be valid. In [10,12,13] it is shown
that the Child–Langmuir model is well adapted to describe the beam region. It is written for all t > 0 in the
domain XB(t)
r � ðneueÞ ¼ 0; meðue � rÞue ¼ er/; �e0D/ ¼ �ene; ð8Þ

where e is the elementary charge and e0 is the vacuum permittivity. For the boundary conditions, we impose
the anode potential and we suppose that the electrons leave the domain freely through the artificial boundary.
At the plasma–beam interface, we assume a zero potential, using the continuity of / (/ = 0 in XP). Further-
more, in the beam region electrons are accelerated by the high positive potential of the anode. This gives an
electronic plasma velocity negligible compared to the electronic beam velocity. Then we impose a zero elec-
tronic velocity (in the beam’s scale) at the interface. Finally, we assume a zero electric potential, this corre-
sponds to a maximal current emission regime (see [16]). The boundary conditions are the following:
/jCA
¼ /A; rne � mjCart ¼ 0; rue � mjCart ¼ 0;

r/ � mjCart ¼ 0; uejCðtÞ ¼ 0; /jCðtÞ ¼ 0; r/ � mjCðtÞ ¼ 0:
ð9Þ
Let us note that the boundary condition r/ � mjCðtÞ ¼ 0 implicitly specifies the current in the direction orthog-
onal to the interface: �neue � m. This condition is called, in physics literature, the ‘‘space charge limitation con-
dition’’. This expresses that the emitted current, here in the beam, is limited by the space charge. The
microscopic process is such that when too much electrons are emitted in the beam, there is an accumulation
of charges near the interface. This charge accumulation creates a local potential which repels the emitted elec-
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trons in the plasma and so limits the emitted current. Next, these accumulated charges are accelerated by the
anode potential letting other electrons leave the plasma, see [31].

In the one-dimensional case, the solution is explicit, it is given in [16]. In the multi-dimensional cases, we do
not have an analytic expression for the current. It depends on the localization of the emission point on the
curve C(t) and on the geometry of the device. Therefore, to compute the current we need to solve the problem
(8), (9). Several numerical schemes have been developed for Child–Langmuir problems, see for example [17,20]
or [57] in the kinetic case. The cost is quite heavy, since the current is implicitly determined by the boundary
condition:r/ � mjC ¼ 0, with / given by the resolution of the Poisson equation. We recall that our main goal is
the numerical resolution of the free boundary problem related to the evolution of the plasma region. Then in
order to focus on this difficulty, we prefer use a simplified model for the beam region. It is based on the one-
dimensional Child–Langmuir solution. So, we first recall this solution.

In the one-dimensional case the device is delimited by the cathode, located at x = 0 and the anode, located
at x = 1 then /A ¼ /ð1Þ > 0. The interface is a moving point, we denote by X(t) its position at time t. In [16],
the authors show that for all t > 0, there exists a unique solution to system (8), (9) in one dimension, if and
only if ox/ðX ðtÞÞ 2 ½0;/A=ð1� X ðtÞÞ�. In this case the current neue is in ½0; jCL� where the maximal current
value jCL corresponds to ox/ðX ðtÞÞ ¼ 0 and is given by
jCLðtÞ ¼
4
ffiffiffi
2
p

e0/
3=2
A

9
ffiffiffiffiffiffiffiffi
eme
p ð1� X ðtÞÞ2

:

Let us note that the current is a constant of x and depends only on the potential of the anode and on the dis-
tance covered by an electron emitted from the interface to the anode.

In our two-dimensional model, we are interested in the current value at each point of the interface. Then we
approximate this value assuming that a one-dimensional Child–Langmuir law can be applied on each trajec-
tory of an electron emitted from the interface C. Let us consider an electron emitted from the point ðx; yÞ of the
interface C(t) to the anode, we denote by ðxA; yAÞ its arrival point (which must be precised) on the anode CA.
We approximate the current in the normal direction by the one-dimensional formula:
ð�jþ � mÞðx; y; tÞ ¼ ðneue � mÞðx; y; tÞ � jCLðx; y; t; dÞ ¼
4
ffiffiffi
2
p

e0ð/AðxA; yA; tÞÞ
3=2

9
ffiffiffiffiffiffiffiffi
eme
p

dðx; y; t; mÞ2
; ð10Þ
for all ðx; yÞ 2 CðtÞ and all t P 0 and where dðx; y; t; mÞ is the distance covered by the emitted electron from
ðx; yÞ 2 CðtÞ to the anode CA. Now it remains to evaluate this distance. To this aim, we introduce the circle
tangential on the one hand to the normal m to C(t) and on the other hand to the normal mA to CA. Let
t > 0 and ðx; yÞ 2 CðtÞ be the starting point of the electron. Let us assume that we know the normal to C(t)
at this point mðx; yÞ ¼ ðmx; myÞ. We denote by ðxA; yAÞ its arrival point on the anode, which is unknown at this
level. The unit normal to CA, external to X, at the point ðxA; yAÞ is given by

mAðxA; yAÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0AðyAÞ

2
q

ð1;�f 0AðyAÞÞ. Finally, we denote by ðxc; ycÞ the center of the circle tangential to

mðx; yÞ and to mAðxA; yAÞ (see Fig. 2).
Fig. 2. Approximation of the electron trajectory in the simplified Child–Langmuir model for the beam region.
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Then ðxA; yA; xc; ycÞ is solution to the system
ðxc � xÞmx þ ðyc � yÞmy ¼ 0;

ðxc � xAÞ � f 0AðyAÞðyc � yAÞ ¼ 0;

xA ¼ fAðyAÞ;
ðxc � xÞ2 þ ðyc � yÞ2 ¼ ðxc � xAÞ2 þ ðyc � yAÞ

2
:

ð11Þ
If there exists a solution to the system (11), we assume that the electrons emitted from the point ðx; yÞ 2 CðtÞ
move along the circle of radius

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxc � xj2 þ jyc � yj2

q
and of center ðxc; ycÞ. But, if the system (11) has no solu-

tion then we suppose that the electrons emitted from the point ðx; yÞ 2 CðtÞ move along the line with direction
mðx; yÞ (see Fig. 2).

We set ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq8

dðx; y; t; mÞ ¼

ðx� xcÞ2 þ ðy � ycÞ
2ðp� arccosðmA � mÞÞ if ð11Þ has a solution;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xAÞ2 þ ðy � yAÞ
2

q
otherwise:

><
>: ð12Þ
This concludes the presentation of the two-dimensional asymptotic model, we summarize it in the next section.

2.4. Summary of the asymptotic model

The asymptotic model consists in the isentropic Euler system (4) for all ðx; yÞ 2 XPðtÞ and all t P 0. The
domain XP(t) is defined by (1) and its dynamic by (3). The boundary conditions at the cathode CK (see
Fig. 1 for the definition of CK) are given by (5) and at the plasma–beam interface by (6), (7). This system
is coupled to the beam region through a boundary condition at the plasma–beam interface. The pressure
(6) depends on the current in the beam region, this current is given by (10), (12) and (11).

3. The numerical method

In this section, we propose a numerical method for the discretization of the asymptotic model in the plasma
region summarized in Section 2.4.

In order to track the interface, we use a volume of fluid method (see [26,59]). This is an Eulerian method
which only requires the knowledge of the volume fraction of fluid present in each cell of the mesh. Then we
transport the averaged quantities (on each cell of the mesh) using a Lagrange-projection scheme coupled with
the SLIC algorithm (for simple line interface calculation, see [36]). The key point consists in taking account of
the reaction-pressure term (6) at a discrete level.

3.1. Principle of the method

For clarity, we consider a rectangular domain, but it is possible to work with more general domain. We
cover the domain X with a uniform rectangular mesh of size Dx · Dy. For i ¼ 1; . . . ;Kx and j ¼ 1; . . . ;Ky ,
we denote by Ci,j the cell ½xi�1=2; xiþ1=2Þ � ½yj�1=2; yjþ1=2Þ where xiþ1=2 ¼ iDx and yjþ1=2 ¼ jDy. Furthermore, let
0 ¼ t0 < t1 < � � � < ts < � � � a sequence of positive real numbers, we define the time step by Dts ¼ tsþ1 � ts

for all s P 0. This time step is calculated such that the classical CFL (Courant–Friedrichs–Levy) condition
is satisfied (see [32]).

It is important to note that at time ts, there are three different states for a given cell. The cell can be com-
pletely filled by the plasma. In this case it is included in the plasma region XPðtsÞ and it is called ‘‘full’’ cell. The
cell can be completely filled by the beam then it is empty of plasma and completely included in the beam region
XBðtsÞ. In this case the cell is called ‘‘empty’’ cell. Finally, the cell can contain both plasma and vacuum then it
contains a piece of the plasma–beam interface CðtsÞ. In this case, it is called ‘‘mixed’’ cell. In a volume of fluid
method we deal only with averaged quantities (here the averaged density and momentum) in each cells of the
mesh even if they are mixed. But in order to reconstruct physical quantities, we keep the physical volume filled
by the plasma in each cell.
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Thus, the discrete unknowns are the discrete averaged density and velocity: ns
i;j and us

i;j ¼ ðu; vÞ
s
i;j and the

discrete physical volume filled by the plasma V u;s
i;j in all cell Ci,j and at all time ts for i ¼ 1; . . . ;Kx,

j ¼ 1; . . . ;Ky and s 2 N. The physical quantities, nu;s
i;j and uu;s

i;j , are given conserving the mass and the
momentum
nu;s
i;j ¼

DxDy
V u;s

i;j
ns

i;j and uu;s
i;j ¼ us

i;j: ð13Þ
A time step of the discretization consists in the determination of all the averaged quantities and the physical
volume filled by the plasma at the discrete time ts+1 (nsþ1

i;j , usþ1
i;j and V u;sþ1

i;j for all i ¼ 1; . . . ;Kx and all

j ¼ 1; . . . ;Ky) knowing these quantities at the discrete time ts. To this aim, we split the isentropic Euler system
(4) in the following two systems
ðSxÞ
otnþ oxðnuÞ ¼ 0;

otðnuÞ þ oxðnuuÞ þ
oxp

miþme

0

 !
¼ 0;

8><
>: ðSyÞ

otnþ oyðnvÞ ¼ 0;

otðnuÞ þ oyðnvuÞ þ
0
oy p

miþme

 !
¼ 0;

8><
>: ð14Þ
where u ¼ ðu; vÞ and with the boundary conditions (5), (6), (7) and (10).
We solve the system (Sx) of (14) using a Lagrange-projection scheme, this gives the approximate variables

nsþ1=2
i;j , u

sþ1=2
i;j and V u;sþ1=2

i;j . Then, we use these values for the initial condition of the system (Sy) of (14) which is
solved still using a Lagrange-projection scheme. We obtain the approximate variables nsþ1

i;j , usþ1
i;j and V u;sþ1

i;j at
time ts+1. In order to not privilege a direction, during the next time step we begin solving (Sy) and finish with
(Sx).

The Lagrange-projection scheme consists in two steps: the Lagrangian step and the projection step. During
the Lagrangian step, we transport the density and the velocity following the characteristic curves of the con-
sidered system. During the projection step, we distribute the transported quantities on the Eulerian grid
fCi;j; i ¼ 1; . . . ;Kx; j ¼ 1; . . . ;Kyg. We detail these two steps for the system (Sx) of (14) in the following.

3.2. The Lagrangian step in the x direction

We recall that the system Sx of (14) holds only in the domain XP(t) for all t > 0. Then this step only concerns
full or mixed cells. Furthermore we have to take into account of the boundary condition (6) at the plasma–
beam interface. Thus, we must localize the (full or mixed) cells for which we use this boundary condition. We
call these cells ‘‘border cells’’ and the other full or mixed cells ‘‘internal cells’’ due to their geometric relation
with the plasma region. We begin this step with the location of border and internal cells. Let s P 0, we define
Es
x ¼ fCi0;j; where j 2 f1; . . . ;Kyg and i0 ¼ maxfi 2 f1; . . . ;Kxg=ns

i;j > 0gg;
Es

y ¼ fCi;j0
; where i 2 f1; . . . ;Kxg and j0 ¼ maxfj 2 f1; . . . ;Kyg=ns

i;j > 0gg:
The set Cs
num ¼ Es

x [ Es
y contains the border cells and gives a diffusive approximation of the interface as shown

in Fig. 3 where the cells included in Cs
num are located by a point.

Then, the cells Ci,j of the mesh sucah that Ci;j 62 Cs
num and such that ns

i;j > 0, are the internal cells. These cells
are located by a cross in Fig. 3.

We begin with the presentation of the Lagrangian step for internal cells, then we present it for the border
cells taking into account of the pressure reaction force.
Fig. 3. Location of border cells for which we have to take into account of the pressure reaction force in the discretization.
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3.2.1. The Lagrangian step in the x direction for internal cells

Let s 2 N be fixed, we introduce the Lagrangian coordinates at time ts associated to system Sx of (14) (see
[46]). We denote by X ðt; x; y; tsÞ the characteristic curve at time t such that X ðts; x; y; tsÞ ¼ x for all y. Then, for
all internal cell Ci,j with j ¼ 1; . . . ;Ky and i 2 f1; . . . ;Kxg, we denote by X sþ1

iþ1=2;j and X sþ1
i�1=2;j, approximations of

X ðtsþ1; xiþ1=2; yj; t
sÞ and X ðtsþ1; xi�1=2; yj; t

sÞ. They are given using an explicit Euler scheme:
X sþ1
kþ1=2;j ¼ xkþ1=2 þ Dtsus

kþ1=2;j for k ¼ i or i� 1; ð15Þ

and where us

kþ1=2;j is an approximation of uðxkþ1=2; yj; t
sÞ. Classically, us

kþ1=2;j is determined using an approxi-
mate solution of the following Riemann problem in Lagrangian coordinates:
ots� omu ¼ 0;

ðmi þ meÞotuþ omp ¼ 0;

ðs; uÞðm; t ¼ 0Þ ¼
ð1=ns

k;j; u
s
k;jÞ if m < 0;

ð1=ns
kþ1;j; u

s
kþ1;jÞ if m > 0;

( ð16Þ
where s = 1/n is the specific volume and the mass variable is defined by dm = ndx. Here, we use the polyno-
mial upwind scheme (see [15] or [10], this is a Roe type solver) in order to determine this approximate solution.

Then, for all internal Eulerian cell Ci;j ¼ ½xi�1=2; xiþ1=2Þ � ½yj�1=2; yjþ1=2Þ we define an associated Lagrangian

cell ~Csþ1=2
i;j ¼ ½X sþ1

i�1=2;j;X
sþ1
iþ1=2;jÞ � ½yj�1=2; yjþ1=2Þ. We associate to ~Csþ1=2

i;j the approximate values of the averaged

density and velocity on this cell, denoted by ~nsþ1=2
i;j and ð~usþ1=2

i;j ;~vsþ1=2
i;j Þ. Using the Lagrangian coordinates, we have
X sþ1
iþ1=2;j � X sþ1

i�1=2;j

� �
~nsþ1=2

i;j ¼ Dxns
i;j;

~usþ1=2
i;j ¼ us

i;j �
Dts

Dxns
i;jðmi þ meÞ

ðps
iþ1=2;j � ps

i�1=2;jÞ;

~vsþ1=2
i;j ¼ vs

i;j;

ð17Þ
where the pressure terms ps
iþ1=2;j and ps

i�1=2;j are calculated with the approximate solutions of the Riemann
problem (16) given by the polynomial upwind scheme (see [15] or [10]), respectively for k = i and i � 1.

3.2.2. The Lagrangian step in the x direction for border cells

Let Ci;j 2 Cs
num be a border cell, the principle of the scheme is the same. We introduce the associated

Lagrangian cell ~Csþ1=2
i;j ¼ ½X sþ1

i�1=2;j;X
sþ1
iþ1=2;jÞ � ½yj�1=2; yjþ1=2Þ where X sþ1

i�1=2;j and X sþ1
iþ1=2;j are given by (15). The

transported averaged quantities on the Lagrangian cell, ~nsþ1=2
i;j and ð~usþ1=2

i;j ;~vsþ1=2
i;j Þ are given by (17). It remains

to precise the velocity and the pressure between the two cells: ðus
kþ1=2;j; p

s
kþ1=2;jÞ for k ¼ i and i� 1. Let k ¼ i or

i� 1, if Ck;j and Ckþ1;j are mixed or full cells, i.e. if ns
k;j 6¼ 0 and ns

kþ1;j 6¼ 0 then the flux ðus
kþ1=2;j; p

s
kþ1=2;jÞ is given

by the polynomial upwind scheme applied to the Riemann problem (16). Otherwise, Ci�1;j (or/and Ciþ1;j) is an
empty cell. Let us assume without loss of generality that Ciþ1;j is empty, the other cases can be easily deduced.
In this case, the boundary condition (6) gives the pressure law on the plasma–beam interface. First, let us
assume that we know an approximation ps

i;j of this pressure law on Cs
i;j ¼ CðtsÞ \ Ci;j: the part of the

plasma–beam interface included in Ci,j and we suppose that we know an approximation of the outward unit
normal vector to Cs

i;j: ms
i;j. We will see in the following our choice for ps

i;j and ms
i;j. Then, we set

ps
iþ1=2;j ¼ ps

i;jm
s
i;j � ð1; 0Þ. It remains to determine us

iþ1=2;j. Since ns
iþ1;j ¼ 0, we can no more work with Lagrangian

coordinates, then we introduce the following Riemann problem between fluid and ‘‘pseudo-vacuum’’ with a
non zero pressure:
otnþ oxðnuÞ ¼ 0;

ðmi þ meÞðotðnuÞ þ oxðnu2ÞxÞ þ oxp ¼ 0;

ðn; uÞ ¼ ðnu;s
i;j ; u

u;s
i;j Þ; if x < 0;

ðn; pÞ ¼ ð0; ps
i;jm

s
i;j � ð1; 0ÞÞ; if x > 0:

(
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where nu;s
i;j and uu;s

i;j are the physical quantities in the cell Ci,j at time ts. Let us note that ps
i;jm

s
i;j � ð1; 0Þ is the pro-

jection on the line fy ¼ 0g of the pressure force. It corresponds to the part of this force acting during the
Lagrangian step in the x-direction.

Classically, if ps
i;j ¼ 0 the solution is given by a rarefaction wave separating the left state ðnu;s

i;j ; u
u;s
i;j Þ and the

vacuum (see [46]). This wave is associated to the first eigen value k� ¼ u� c where c is the sound speed given

by c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðnÞ=ðmi þ meÞ

p
. In this case, the velocity of the plasma–vacuum interface is given by
us
iþ1=2;j ¼ uu;s

i;j þ
2

c� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðnu;s

i;j Þ
mi þ me

s
:

If ps
i;j 6¼ 0 we can prove (see [39] for details) that there is a unique solution constituted of three constant states

ðnu;s
i;j ; u

u;s
k;j Þ, ðnI ; uIÞ and the ‘‘pseudo-vacuum’’ such that ðnI ; uIÞ and the ‘‘pseudo-vacuum’’ are separated by a

shock wave of velocity r ¼ uI . Furthermore nI ¼ p�1ðps
i;jm

s
i;j � ð1; 0ÞÞ and

– if nI > nu;s
i;j then ðnu;s

i;j ; u
u;s
i;j Þ and ðnI ; uIÞ are separated by a shock wave associated to the first eigen value

k� ¼ u� c and
uI ¼ uu;s
i;j �

nI � nu;s
i;jffiffiffiffiffiffiffiffiffiffiffi

nIn
u;s
i;j

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðnIÞ � pðnu;s
i;j Þ

ðmi þ meÞðnI � nu;s
i;j Þ

s
;

– otherwise ðnu;s
i;j ; u

u;s
i;j Þ and ðnI ; uIÞ are separated by a rarefaction wave associated to the first eigen value

k� ¼ u� c and
uI ¼ uu;s
i;j þ

2

c� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðnu;s

i;j Þ
mi þ me

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðnIÞ

mi þ me

s0
@

1
A:
In both cases, we set
us
iþ1=2;j ¼ uI :
It remains to calculate ps
i;j and ms

i;j the approximations of the reaction-pressure law on Cs
i;j ¼ CðtsÞ \ Ci;j: the

part of the plasma–beam interface included in Ci,j and of the outward unit normal vector to Cs
i;j.

3.2.2.1. Approximation of the unit normal and of the pressure reaction force. We begin with the reconstruction
of the outward unit normal vector to Cs

i;j. We use Youngs’ method detailed in [60]. This is a volume of fluids
method which directly gives an oblique representation of the 2D interface. We stress that we use this method
only for the calculation of the unit normal but not for the projection step. For the projection step, we use the
SLIC method which rather defines transfer priorities between the different fluids. Youngs’ method consists in
reconstructing the slope of the interface in each mixed cell from the associated normal vector. We briefly recall
the principle of this method in the following.

For all cells neighboring Ci,j, i.e. the cells Ck,l with ðk; lÞ 2 fi� 1; i; iþ 1g � fj� 1; j; jþ 1g and
ðk; lÞ 6¼ ði; jÞ, we compute the associated volume fraction filled by the plasma at time
ts : f s

k;l ¼ V u;s
k;l =Dx� Dy. We recall that V u;s

k;l is the physical volume filled by the plasma in the cell Ck,l at time
ts. We deduce the volume fractions corresponding to each direction: f s

E, f s
W, f s

N and f s
S , we get
f s
N ¼

f s
i�1;jþ1 þ 2f s

i;jþ1 þ f s
iþ1;jþ1

4
; f s

S ¼
f s

i�1;j�1 þ 2f s
i;j�1 þ f s

iþ1;j�1

4
;

f s
E ¼

f s
iþ1;j�1 þ 2f s

iþ1;j þ f s
iþ1;jþ1

4
; f s

W ¼
f s

i�1;j�1 þ 2f s
i�1;j þ f s

i�1;jþ1

4
:

The outward unit normal to the interface on the cell Ci,j is then deduced from the approximated gradient of

f s
i;j: rappf s

i;j ¼ ð
f s

E
�f s

W

2Dx ;
f s

N
�f s

S

2Dy Þ by setting ms
i;j ¼

�rappf s
i;j

krappf s
i;jk

.
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Now let us turn to ps
i;j, the approximation of the reaction-pressure on Cs

i;j. Using (12), we determine the
approximate distance ds

i;j covered by an electron emitted from the center of Ci,j, we set ds
i;j ¼ dðxi; yj; t

s; ms
i;j)

with xi ¼ ði� 1=2ÞDx and yj ¼ ðj� 1=2ÞDy. Inserting the result in (10), we obtain an approximation of the
emitted current in the plasma in the normal direction js

CL;i;j ¼ jCLðxi; yj; t
s; ds

i;jÞ. Thanks to (6), we obtain the
approximate reaction-pressure exerted on the plasma–beam interface in the cell Ci,j at time ts:
ps
i;j ¼ me

jjs
CL;i;jj

2

nu;s
i;j
þ peðnu;s

i;j Þ;
where nu;s
i;j is the physical density of the plasma in the cell Ci,j at time ts defined by (13).

This concludes the presentation of the Lagrangian step, during which we transport the quantities along the
characteristic curves. It remains to project these transported quantities on the fixed Eulerian mesh. We do it in
the next section.

3.3. The projection step in the x direction

During the Lagrangian step in the x-direction the averaged quantities have been advected following char-
acteristic curves. Here projecting these quantities, we go back to the initial Eulerian fixed grid.

3.3.1. Principle of the method

Let us consider the Eulerian cell Ci,j with i ¼ 1; . . . ;Kx and j ¼ 1; . . . ;Ky . After the Lagrangian step in the

x-direction, we know the averaged density, ~nsþ1=2
i;j , and the mean velocity, ð~usþ1=2

i;j ;~vsþ1=2
i;j Þ, in the Lagrangian cell

~Csþ1=2
i;j ¼ ½X sþ1

i�1=2;j;X
sþ1
iþ1=2;jÞ � ½yj�1=2; yjþ1=2Þ associated to Ci,j. We recall that X sþ1

i�1=2;j and X sþ1
iþ1=2;j are defined by

(15). During the projection step in the x direction, we first determine physical quantities in the Lagrangian

cell ~Csþ1=2
i;j then we project them on the Eulerian grid.

We define the physical quantities on the Lagrangian cell, assuming the deformation of the physical volume
V u;s

i;j proportional to the deformation of Ci,j. Then the physical volume filled by the plasma in ~Csþ1=2
i;j at time ts+1

is given by
~V u;sþ1=2
i;j ¼ V u;s

i;j

~V sþ1=2
i;j

DxDy
; ð18Þ
where ~V sþ1=2
i;j ¼ ðX sþ1

iþ1=2;j � X sþ1
i�1=2;jÞDy is the volume of the Lagrangian cell ~Csþ1=2

i;j . This gives the physical density
and velocity of the plasma in the cell ~Csþ1=2

i;j after the Lagrangian step in the x-direction
~nu;sþ1=2
i;j ¼

~V sþ1=2
i;j

~V u;sþ1=2
i;j

~nsþ1=2
i;j ; ~uu;sþ1=2

i;j ¼ ~usþ1=2
i;j ; ~vu;sþ1=2

i;j ¼ ~vsþ1=2
i;j :
We want to project these quantities and obtain the averaged density and velocity in the Euler cell Ci,j at time
tsþ1=2 (i.e. before the Lagrange-projection step in the y-direction).

We denote by riþ1=2;j the interface between Ci,j and Ciþ1;j and by V u;sþ1=2
iþ1=2;j the signed physical volume of

plasma which crosses riþ1=2;j between the times ts and ts+1 during the previous Lagrangian step in the x-direc-
tion. This volume is positive if the plasma is going from Ci,j to Ciþ1;j and negative otherwise. Similarly, we
denote by V u;sþ1=2

i�1=2;j the signed physical volume of plasma which crosses ri�1=2;j, the interface between Ci�1;j

and Ci,j, during the same time. These quantities will be precised later.
Then the unknowns at time tsþ1=2 are given by
V u;sþ1=2
i;j ¼ V u;s

i;j � V u;sþ1=2
iþ1=2;j þ V u;sþ1=2

i�1=2;j ;

V i;jn
sþ1=2
i;j ¼ ~V u;sþ1=2

i;j ~nu;sþ1=2
i;j � V u;sþ1=2

iþ1=2;j ~nu;sþ1=2
iþ1=2;j þ V u;sþ1=2

i�1=2;j ~nu;sþ1=2
i�1=2;j ;

V i;jðnuÞsþ1=2
i;j ¼ ~V u;sþ1=2

i;j ð~n~uÞu;sþ1=2
i;j � V u;sþ1=2

iþ1=2;j ð~n~uÞu;sþ1=2
iþ1=2;j þ V u;sþ1=2

i�1=2;j ð~n~uÞu;sþ1=2
i�1=2;j ;

V i;jðnvÞsþ1=2
i;j ¼ ~V u;sþ1=2

i;j ð~n~vÞu;sþ1=2
i;j � V u;sþ1=2

iþ1=2;j ð~n~vÞu;sþ1=2
iþ1=2;j þ V u;sþ1=2

i�1=2;j ð~n~vÞu;sþ1=2
i�1=2;j ;
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where for l ¼ i� 1 or i
ð~n; ~u;~vÞu;sþ1=2
lþ1=2;j ¼

ð~n; ~u;~vÞu;sþ1=2
l;j if X sþ1

lþ1=2;j P xlþ1=2;

ð~n; ~u;~vÞu;sþ1=2
lþ1;j otherwise:

(

In order to conclude the presentation of the projection step, we must define the signed physical volume of plas-

ma which crosses each interface during the Lagrangian step in the x direction, i.e. V u;sþ1=2
iþ1=2;j for all i ¼ 1; . . . ;Kx,

all j ¼ 1; . . . ;Ky and all s P 0.

3.3.2. Determination of the physical volume flowed through two cells during Dts

Let s P 0, i 2 f1; . . . ;Kxg and j 2 f1; . . . ;Kyg, we assume that X sþ1
iþ1=2;j P xiþ1=2, (the case X sþ1

iþ1=2;j < xiþ1=2

can be easily deduced). In this case, the plasma flowed from Ci,j to Ciþ1;j, then, the value V u;sþ1=2
iþ1=2;j depends

on the state of the cell Ci,j at time ts: i.e. if Ci,j is a full or a mixed cell.

� 1st case: Ci,j is full of plasma:
If the cell Ci,j is full then all its volume flowing through riþ1=2, the interface between Ci,j and Ciþ1;j, is a phys-
ical plasma volume then
V u;sþ1=2
iþ1=2;j ¼ X sþ1

iþ1=2;j � xiþ1=2

� �
Dy:
� 2nd case: Ci,j is a mixed cell:
If the cell Ci,j is mixed, we must decide where was the plasma in the cell Ci,j at time ts as well as where is the
plasma in the cell ~Csþ1=2

i;j after the Lagrangian step in the x-direction. From these quantities we easily cal-
culate the volume of plasma which has flowed from Ci,j to Ciþ1;j. We use the SLIC algorithm (simple line
interface calculation) [36]. This algorithm gives a non continuous reconstruction of the plasma–vacuum
interface. Then it does not give a realistic representation of the interface but it rather defines transfer pri-
orities between fluids. The SLIC method is not limited by the number of fluids present in the problem. Here,
we detail it in our particular situation with two ‘‘fluids’’: the plasma and the vacuum.

In the SLIC method, the priorities of transfer in a cell Ci,j depends on the state of its neighbors Ci�1;j and
Ciþ1;j. Each cell can be full, mixed or empty and so nine different cases have to be considered.

– First case: Ci�1;j and Ciþ1;j are both empty. In this case, we assume that the plasma is located at the center of
the cell Ci,j. In all cases, the plasma in the cell ~Csþ1=2

i;j is located like in the cell Ci,j. The situation is drawn in
Figs. 4 and 5a.
An easy calculation shows that the physical plasma volume of Ci,j flowed through riþ1=2;j is given by
V u;sþ1=2
iþ1=2;j ¼ min V sþ1=2

iþ1=2;j �min V sþ1=2
iþ1=2;j;

~V sþ1=2
i;j � ~V u;sþ1=2

i;j

� �
=2

� �
; ~V u;sþ1=2

i;j

� �
;

where V s
iþ1=2;j, the volume of Ci,j flowed through riþ1=2;j, is given by

V sþ1=2
iþ1=2;j ¼ X sþ1

iþ1=2;j � xiþ1=2

� �
Dy: ð19Þ

Furthermore ~V u;sþ1=2
i;j , the physical volume filled by the plasma in ~Csþ1=2

i;j is given by (18) and finally ~V sþ1=2
i;j ,

the volume of ~Csþ1=2
i;j , is given by

~V sþ1=2
i;j ¼ X sþ1

iþ1=2;j � X sþ1
i�1=2;j

� �
Dy: ð20Þ

– Second case: Ci�1;j and Ciþ1;j are both full. This case is symmetric to the previous, we assume that the vac-
uum is located at the center of the cells Ci,j and ~Csþ1=2

i;j with half of the plasma to the left and half of the
plasma to the right (see Fig. 5b). In this case the physical plasma volume of Ci,j flowed through riþ1=2;j

is given by



Fig. 4. Determination of the plasma volume flowed through riþ1=2;j ¼ oCi;j \ oCiþ1;j during a time step when Ci,j is a mixed cell and Ci�1;j

and Ciþ1;j are empty cells.

Fig. 5. Location of the plasma volume in the cell Ci,j in the case (a) Ci�1;j and Ciþ1;j are both empty, (b) Ci�1;j and Ciþ1;j are both full,
(c) Ci�1;j is full and Ciþ1;j is empty or Ci�1;j is full and Ciþ1;j is mixed or Ci�1;j is mixed and Ciþ1;j is empty, (d) Ci�1;j is empty and Ciþ1;j is full
or Ci�1;j is mixed and Ciþ1;j is full or Ci�1;j is empty and Ciþ1;j is mixed, (e) Ci�1;j and Ciþ1;j are both mixed.
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V u;sþ1=2
iþ1=2;j ¼ min V sþ1=2

iþ1=2;j;
~V u;sþ1=2

i;j =2
� �

;

where we recall that ~V u;sþ1=2
i;j and V sþ1=2

iþ1=2;j are given by (18) and (19).
– Third and fourth cases: Ci�1;j full and Ciþ1;j empty or Ci�1;j empty and Ciþ1;j full. We assume that the plasma

is located right next to the plasma (see Figs. 5c and d). This gives
V u;sþ1=2
iþ1=2;j ¼

min V sþ1=2
iþ1=2;j �min V sþ1=2

iþ1=2;j;
~V sþ1=2

i;j � ~V u;sþ1=2
i;j

� �
; ~V u;sþ1=2

i;j

� �
if Ci�1;j is full;

min V sþ1=2
iþ1=2;j;

~V u;sþ1=2
i;j

� �
if Ci�1;j is empty;

8><
>:

where we recall that ~V u;sþ1=2
i;j , V sþ1=2

iþ1=2;j and ~V sþ1=2
i;j are respectively given by (18)–(20). Remark that the dissym-

metry of these two cases is due to the positivity of the velocity.
– Fifth and sixth cases: Ci�1;j full and Ciþ1;j mixed or Ci�1;j mixed and Ciþ1;j full. The plasma is put right next

to the full cell (see Figs. 5c and d). We obtain
V u;sþ1=2
iþ1=2;j ¼

min V s
iþ1=2;j �min V s

iþ1=2;j;
~V sþ1=2

i;j � ~V u;s
i;j

� �
; ~V u;s

i;j

� �
; if Ci�1;j is full;

min V s
iþ1=2;j;

~V u;s
i;j

� �
; if Ci�1;j is mixed:

8><
>:
– Seventh and eighth cases: Ci�1;j mixed and Ciþ1;j empty or Ci�1;j empty and Ciþ1;j mixed. We assume that the
plasma is located next to the mixed cell (see Figs. 5c and d). This gives
V u;sþ1=2
iþ1=2;j ¼

min V s
iþ1=2;j �min V s

iþ1=2;j;
~V sþ1=2

i;j � ~V u;s
i;j

� �
; ~V u;s

i;j

� �
if Ci�1;j is mixed;

minðV s
iþ1=2;j;

~V u;s
i;j Þ if Ci�1;j is empty:

8<
:
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– Ninth case: Ci�1;j and Ciþ1;j are both mixed. In this case we cannot privilege one cell then we consider a
plasma–vacuum interface in Ci,j parallel to the axis [0x) (see Fig. 5e). We deduce

~u;s
V u;sþ1=2
iþ1=2;j ¼

V i;j

~V sþ1=2
i;j

V s
iþ1=2;j:
This concludes the presentation of the projection step and so the presentation of the Lagrange-projection
scheme.

4. The numerical results

In this section, we first study the accuracy of the proposed numerical method. We apply it to a test case of a
fluid compression for which an analytic solution is known. Next, we present numerical results for high current
diodes, modeled by the quasi-neutral system (4)–(6).

4.1. Accuracy of the numerical scheme: homogeneous space pressure

We study the accuracy of the numerical scheme on a test case of a fluid compression. We assume that the
problem is invariant in the [0,z) direction and we consider a two-dimensional radial problem in the plane
ð0; x; yÞ as shown in Fig. 6. We consider a fluid occupying initially a ball of center 0 = (0, 0) and of radius
R0 > 0 at t = 0. This fluid is subject to a given external uniform pressure on its surface and so it is compressed
on the point (0, 0). Let us denote by q and u the density and the two-dimensional velocity of the fluid and by
R(t) the radius of the ball occupied by the fluid at the time t > 0. We will precise R(t) in the following. Then,
assuming an adiabatic pressure law, q and u satisfy the isentropic Euler equations
otqþr � ðquÞ ¼ 0;

otuþr � ðqu� uÞ þ rp ¼ 0;

pðx; y; tÞ ¼ Kqc if x2 þ y2 < R2ðtÞ;
P SðtÞ if x2 þ y2 ¼ R2ðtÞ;

( ð21Þ
for all ðx; yÞ 2 R2 such that x2 þ y2
6 R2ðtÞ and all t > 0. The constants K > 0 and c > 1 are given positive real

numbers defining the pressure law. Finally, PS is the given external uniform pressure applied on the boundary
of the domain.

In [2], it is shown that if the applied external uniform pressure and the initial conditions are well chosen
then the system (21) has an analytic solution. Let us denote by Tf > 0 the final compression time. Then, at time
Tf the compression on point (0,0) has occurred. We set X ¼ 1=T f the compression frequency, and we define
the following radial initial condition for the density
qðx; y; 0Þ ¼ qðr cos h; r sin h; 0Þ ¼ �q0 þ ðc�1Þ2X2

2c3K r2=ðc�1Þ if r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
6 R0;

0 otherwise;

(

where �q0 > 0 is a given positive real number. The initial velocity is given by
Fig. 6. Fluid subject to an external homogeneous space pressure.
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Dx = D

K.-C. Le Thanh et al. / Journal of Computational Physics 225 (2007) 1937–1960 1951
uðx; y; 0Þ ¼ uðr cos h; r sin h; 0Þ ¼ � Xr
c ðcos h; sin hÞ if r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
6 R0;

ð0; 0Þ otherwise:

(

The external uniform pressure applied on the boundary of the domain and the radius of the domain are de-
fined by
P SðtÞ ¼
K

ð1� XtÞ2
�q0 þ
ðc� 1Þ2X2

2c3K
R2=ðc�1Þ

0

 !c

; RðtÞ ¼ R0ð1� XtÞ1=c; ð22Þ
for all t < Tf.
In this case an analytic solution is given by
ðq; uÞðx; y; tÞ ¼ ðq; uÞðr cos h; r sin h; tÞ ¼
~qðr; tÞ; ~uðr; tÞðcos h; sin hÞð Þ if r 6 RðtÞ;
ð0; ð0; 0ÞÞ otherwise;

�
ð23Þ
where
~qðr; tÞ ¼ 1

ð1� XtÞ2=c
�q0 þ
ðc� 1Þ2X2

2c3K
r

ð1� XtÞ1=c

 !2=ðc�1Þ
0
@

1
A;
and
~uðr; tÞ ¼ � Xr
cð1� XtÞ :
We choose for the initial density at the origin �q0 ¼ 1, the initial radius is R0 = 1 and the final time of the
compression is Tf = 0.5. Furthermore, the pressure law is defined by K = 1 and c = 2. In the simulations, we
consider a rectangular domain of size ½0; Lx� � ½0; Ly � with Lx = Ly = 2 which is discretized with a uniform
Cartesian mesh.

Fig. 7–9 present error results as functions of time for different meshes: Dx = Dy = 2/50, Dx = Dy = 2/100
and Dx = Dy = 2/200.

Fig. 7 shows the relative error in L2 norm between the analytic and the approximate densities. Let us define
this norm, we denote by K ¼ 2=Dx ¼ 2=Dy, then the approximate density is a piecewise constant function
given by qappðx; y; tÞ ¼ qm

i;j for x 2 ½ði� 1ÞDx; iDxÞ, y 2 ½ðj� 1ÞDy; jDyÞ and t 2 ½tm; tmþ1Þ with i; j 2 f1; . . . ;Kg
and ðtmÞmP0 the sequence of the discrete times. We project the exact solution on this space of piecewise con-

stant functions, defining qexðx; y; tÞ ¼ ðqexÞ
m
i;j for x 2 ½ði� 1ÞDx; iDxÞ, y 2 ½ðj� 1ÞDy; jDyÞ and t 2 ½tm; tmþ1Þ with

i; j 2 f1; . . . ;Kg and m P 0. For defining ðqexÞ
m
i;j, we first introduce Ck;i;j ¼ ðxk;i;j; yk;i;jÞ, for k ¼ 1; . . . ; 4, the ver-

tices of the square ½ði� 1ÞDx; iDx� � ½ðj� 1ÞDy; jDy�. We denote by Cint;m
i;j ¼ fk 2 f1; . . . ; 4g;
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L2 relative error on the fluid density as a function of time for different meshes: Dx = Dy = 2/50 and Dx = Dy = 2/200 (left),
y = 2/100 (right). The ‘‘100 · 100 cells’’ curve is between the ‘‘200 · 200 cells’’ and ‘‘50 · 50 cells’’ curves.



Fig. 8. L2 relative error on the fluid momentum as a function of time for different meshes: Dx = Dy = 2/50 and Dx = Dy = 2/200 (left) and
Dx = Dy = 2/100 (right). The ‘‘100 · 100 cells’’ curve is between the ‘‘200 · 200 cells’’ and ‘‘50 · 50 cells’’ curves.

Fig. 9. Left and middle: Relative error on the fluid–vacuum interface position, for Dx = Dy = 2/50 and Dx = Dy = 2/200 (left) and
Dx = Dy = 2/100 (middle). The approximate values of the fluid–vacuum interface positions are given by the averaged value of the distance
between the origin and the center of all border cells (see Fig. 3 for the definition of border cells). The ‘‘100 · 100 cells’’ curve is between the
‘‘200 · 200 cells’’ and ‘‘50 · 50 cells’’ curves. Right: exact and approximate values of the plasma–vacuum interface position as functions of
time for Dx = Dy = 2/100. The approximate values are the minimum, the maximum and the averaged value of the distance between the
origin and the center of all border cells.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxk;i;jj2 þ jyk;i;jj

2
q

6 RðtmÞg, then ðqexÞ
m
i;j ¼ 1

cardðCint;m
i;j Þ

P
l2Cint;m

i;j
qðCk;i;j; tmÞ where q is the exact solution defined by

(23) and cardðCint;m
i;j Þ is the cardinal of the set Cint;m

i;j . The relative error between the analytic and the approx-

imate densities in L2 norm is given by
XK

i¼1

XK

j¼1

DxDy qm
i;j � ðqexÞ

m
i;j

��� ���2
 !1=2, XK

i¼1

XK

j¼1

DxDy ðqexÞ
m
i;j

��� ���2
 !1=2

: ð24Þ
Fig. 8 gives the relative error between the analytic and the approximate momentums. We can see that the
numerical solution converges to the analytic solution since the errors on the density and and on the momen-
tum are decreasing while the mesh is refined. The left and middle pictures of Fig. 9 give the relative error be-
tween the exact and approximate radii of the fluid bubble. The exact radius is given by (22) and the
approximate radius is obtained with an averaged value of the distance between the origin and the center of
all border cells (see Fig. 3 for the definition of border cells). The right picture of Fig. 9 presents the exact radius
and different values for the approximate radius: the previous averaged value, the minimum and maximum val-
ues of the distance between the origin and the center of all border cells. We can see that even if the error be-
tween the exact radius and the averaged value is decreasing from time t = 0.2 the approximation of the radius
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is less and less accurate since the variance increases. But, even with a rough mesh (50 · 50 cells) the error on
the interface position is of order 1.% and so it is very small. This is an important property for our problem
since we recall that getting precisely the interface position is a key point in the high current diodes problem
because it governs the value of the current in the electron beam. Figs. 10–12 give an L1 comparison between
the exact and the approximate densities at times t = 0.07 and t = 0.3. We can see that the error is large on
border cells but small on interior cells. This error increases with time but does not introduce instabilities since
in the interior cells the error is still small at time t = 0.3. Fig. 13 shows the same behavior of the scheme on the
momentum. Right pictures of Figs. 11, 12 and the bottom right picture of Fig. 13 present the error on the
density and momentum for interior cells. We can see that the scheme has a good agreement with the exact
solution in the interior of the fluid bubble. Fig. 14 presents the fluid bubble for different times, on the top given
by the approximate solution with Dx = Dy = 2/50, in the middle given by the approximate solution with
Dx = Dy = 2/200 and on the bottom given by the exact solution. We can see that the approximate bubble be-
comes square while the exact bubble is circular. This is due to the numerical algorithm and more precisely to
the splitting of the Euler system into systems (14) and to the SLIC algorithm used in the projection step. In-
deed with systems (14) the transport in the directions x and y are decoupled and this privileges the Cartesian
deformations. Furthermore, the SLIC algorithm gives a square reconstruction of the interface and increases
this phenomena. Fig. 14 shows that the convergence towards a circular bubble is very slow since multiplying
the number of cells by 4 · 4, the difference between the results is not significant. This point will have to be
ameliorated in future works. This can be done discretizing directly system (4) instead of systems (14) and using
Youngs’ method (see [60]) instead of the SLIC algorithm in the projection step. This error on the location of
border cells explains the important errors encountered on the density and momentum for border cells, see left
pictures of Figs. 11, 12 and the bottom left picture of Fig. 13. It is important to note that in spite of the bad
approximation of the density and velocity for border cells, we have a very good prediction of the mean inter-
face position (see Fig. 9, right). Furthermore, we stress that Fig. 14 shows that we have the right behavior of
the bubble and the right compression time since at exactly t = 0.5 the numerical bubble has disappeared com-
pletely of the domain like the exact bubble.
Fig. 10. On the left: approximate density given by the VOF scheme presented in Section 3 at times t = 0.07 and t = 0.3 for Dx = Dy =
2/100. On the right: exact density given by (23) at times t = 0.07 and t = 0.3. It is projected on the mesh.



Fig. 11. Difference between the exact and the approximate densities at time t = 0.07, on the left for all the fluid bubble and on the right
only for interior cells. The approximate density is given by the VOF scheme presented in Section 3 for Dx = Dy = 2/100. The exact density
is given by (23) and is projected on the mesh.

Fig. 12. Difference between the exact and the approximate densities at time t = 0.3, on the left for all the fluid bubble and on the right only
for interior cells. The approximate density is given by the VOF scheme presented in Section 3 for Dx = Dy = 2/100. The exact density is
given by (23) and is projected on the mesh.
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4.2. High current diodes

The accuracy of the scheme, detailed in Section 3, has been studied when an homogeneous pressure is
applied on the surface of a fluid bubble. Now, we present results for high current diodes. We recall that
the asymptotic model of Section 2 has been proposed to describe such a device. We approximate it with
the VOF method presented in Section 3. Physical parameters for high current diodes (see [30,34,48,55,58]
for a more precise description of high current diodes) are chosen such that the distance between electrodes
L = 10�2 m, the heat specific ratios: ci ¼ ce ¼ 5=3 and Ci ¼ Ce ¼ 1. We consider protons and electrons, then
mi ¼ 3:37� 10�27 kg and me ¼ 9:1� 10�31 kg. The temperature, the density and the velocity at the injection
point are chosen such that: T i ¼ T e ¼ 5 eV, ni ¼ ne ¼ n0 ¼ 1020 m�3 and ui ¼ ue ¼ u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eT i=mi

p
¼

1:5� 104 m/s, where we recall that e ¼ 1:6� 10�19 C is the positive elementary charge. Finally, the applied
potential is defined by /ðx ¼ 0Þ ¼ 0 V and /ðx ¼ LÞ ¼ /L ¼ 105 V.

In the following simulations, we consider a square domain and the injection region for the plasma is
assumed to be small, of size 2Dx such that the artificial boundary Cart does not act on the plasma expansion.
We discretize the domain with a uniform Cartesian mesh constituted of 100 · 100 cells. Moreover, the one-
dimensional study of such a device (see [12]) shows that in order to get the right interface position, the reac-
tion-pressure acting along the interface must be penalized by the coefficient a ¼ 0:5.

Fig. 15 presents the density in the region filled by the plasma for time t ¼ 0:10s; t ¼ 0:20s; t ¼ 0:30s and
t ¼ 0:40s. The plasma bubble expands from the cathode to the anode. It is slowed down by the reaction pres-
sure force which expresses the reaction of the plasma to the emission of electrons in the beam. We recall that
we have chosen a free current model with a reaction pressure force located at the plasma–beam interface only.



Fig. 14. Fluid bubble for different times t = 0.07, t = 0.3, t = 0.4 and t = 0.47. We can see the different type of the cells: in gray, the full
cells, in white, the mixed cells and in black, the empty cells. Top and middle, the results are computed with the VOF scheme presented in
Section 3 with Dx = Dy = 2/50 (top) and Dx = Dy = 2/200 (middle). Bottom: the results are computed with the exact solution given by (23)
and projected on the mesh.

Fig. 13. Top: Euclidean norms of the approximate momentum (left) and of the exact momentum (right) at time t = 0.07. Bottom:
Difference between the Euclidean norms of the exact and approximate momentums at time t = 0.07, on the left for all the fluid bubble, on
the right only for interior cells. The approximate momentum is given by the VOF scheme presented in Section 3 for Dx = Dy = 2/100. The
exact momentum is given by (23) and is projected on the mesh.
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Fig. 15. Plasma density at the time t = 0.1s, t = 0.2s, t = 0.3s, t = 0.4s with s ¼ u0=L ¼ 6:67� 10�7 s. The solution is computed with the
discretized asymptotic model using the VOF scheme presented in Section 3. We use a uniform Cartesian mesh with 100 · 100 cells.
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We can observe that due to this reaction-pressure force, the plasma region keeps connected during the simu-
lation, there is no instabilities at the interface. Hence, Fig. 16 presents the projections of the density in the x

direction. It shows more precisely the effect of the reaction-pressure term: the front of the plasma is very stiff
Fig. 16. Orthogonal projection on [0,x) of the plasma density at the time t = 0.1s, t = 0.2s, t = 0.3s, t = 0.4s with
s ¼ u0=L ¼ 6:67� 10�7 s. The solution is computed with the discretized asymptotic model using the VOF scheme presented in Section
3. We use a uniform Cartesian mesh with 100 · 100 cells.
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near the interface. Note that, like in one-dimensional simulations, see [12,14], we observe a non-physical over-
flow in the density results at the plasma–beam interface. This is due to the model and more precisely to the fact
that the reaction-pressure force should be exerted in all the plasma and not only at the plasma–beam interface.
We recall that in one dimension in spite of this, the interface position is well predicted. A possible way to over-
come this problem consists in using a quasi-neutral model with a non vanishing current for the description of
the plasma, see [13] for one-dimensional numerical results. In Fig. 15, we can also note that the physical sym-
metry of the plasma bubble with rapport to the line y ¼ 0:5 is well described by the numerical solution. Indeed,
let us denote by napp the piecewise constant approximation of the density n. This approximation is defined by
nappðx; y; tÞ ¼ nm

i;j for all x 2 ½ði� 1ÞDx; iDxÞ, y 2 ½ðj� 1ÞDy; jDyÞ and t 2 ½tm; tmþ1Þ with i; j 2 f1; . . . ; 100g
and ðtmÞmP0 the sequence of the discrete times. We define the L1 error on the symmetry by errðtÞ ¼P100

i¼1

P50
j¼1 DxDyjnm

i;j � nm
i;100�jþ1j=

P100
i¼1

P50
j¼1DxDyjnm

i;jj if t 2 ½tm; tmþ1Þ. Then, the error on the symmetry for

the different times plotted in Fig. 15 are given by errð0:1sÞ � 1:2� 10�13, errð0:2sÞ � 9:4� 10�13,

errð0:3sÞ � 1:05� 10�12 and errð0:4sÞ � 1:74� 10�9. This shows that the symmetry is well described by the
approximate solution. Fig. 17 shows the plasma velocity. The effect of the reaction-pressure term is confirmed
here since the L2 norm of the velocity vector is smaller near the interface than in the plasma bubble. This dif-
ference increases with time, this is due to the fact that the pressure reaction force increases when the distance
between the interface and the anode decreases. Furthermore, Fig. 17 shows an azimuthal asymmetry. At times
t ¼ 0:1s and t ¼ 0:2s the plasma bubble is oval. This shape is physical. Indeed, the electrons are accelerated in
the x-direction because of the positive potential of the anode located on the plane x = 1. Then, the ions try to
follow the electrons for quasi-neutrality reasons, and the plasma bubble becomes oval. At times t ¼ 0:3s and
t ¼ 0:4s there is a deformation on the front of the bubble. This shape is no more physical. Like for the non-
physical overflow in the density results at the plasma–beam interface, this deformation is due to the model and
more precisely to the reaction-pressure force. Indeed, this force should be exerted in all the plasma. But in our
model, it is located at the plasma–beam interface. Then, the reaction-pressure force is too large at the
Fig. 17. Plasma velocity at the time t = 0.1s, t = 0.2s, t = 0.3s, t = 0.4s with s ¼ u0=L ¼ 6:67� 10�7 s. The solution is computed with the
discretized asymptotic model using the VOF scheme presented in Section 3. We use a uniform Cartesian mesh with 100 · 100 cells. The
vectors indicate the direction of the velocity vector and the color gives the L2 norm of the velocity vector.
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plasma–beam interface and leads to unphysical deformations of the plasma bubble. We recall that the quasi-
neutral plasma model with a non-vanishing current proposed in [13] gives a model for which the pressure-reac-
tion force is exerted continuously in all the plasma region. Then, using this model would certainly allow to
overcome this problem.

5. Conclusion

In this paper, we proposed a simplified two-dimensional model for the description of a plasma bubble
expansion between two electrodes. This model is an extension of the one-dimensional model of [12] obtained
by a formal asymptotic analysis, from the two-fluid Euler–Poisson model. This model is constituted of the
isentropic Euler equations for the quasi-neutral fluid. For the beam region we proposed a simplified Child–
Langmuir model. It consists in assuming that the one-dimensional Child–Langmuir law can be applied.
For all points of the plasma–beam interface, knowing the distance covered by an electron from this point
to the anode, the one-dimensional Child–Langmuir law gives the current at the plasma–beam interface point.
We proposed a simple method to approximate this covered distance.

Furthermore, we described the numerical scheme used for the discretization of this model. This is a volume
of fluid method with the SLIC algorithm (simple line interface calculation). We detailed the numerical process-
ing of the ‘‘pressure reaction’’ term acting along the discrete interface. We gave numerical results for a test case
of a two-dimensional fluid compression for which we can compare the numerical solution to an analytical
solution. Then we performed numerical simulations of the high current diodes problem.

These preliminary results of the numerical plasma–beam interface tracking give promising results which can
be extended to more complex models. Indeed with the two-dimensional fluid compression test case we have
seen that we have the right compression time and a good approximation, with the mean value, of the bubble
radius. The splitting of the system into the transport in the directions x and y and the SLIC algorithm privilege
the Cartesian deformations, and at the end of the simulation the approximate bubble becomes square while
the exact bubble is circular. This point can be ameliorated discretizing directly system (4) instead of the splitted
systems (14) and using Youngs’ method (see [60]) instead of the SLIC algorithm in the projection step.

In the case of the high current diodes problem, the plasma bubble expansion is well described. A general-
ization of this work to a non-zero current model, like the one proposed in [13] for the one-dimensional case,
would be interested in order to better approximate the plasma density, i.e., without the overflow at the
plasma–beam interface. Then, a comparison with the results obtained in [11] using an asymptotic preserving
scheme would offer attractive perspectives.
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